20.5 mmol, 1 equiv), and DMF (50 mL) were mixed and stirred at $0 °C$. After 48 h at $0 °C$, the DMF was removed in vacuo and the residue flash chromatographed in 9:1 pentane/ethyl acetate to yield 4.84 g (85%) of a white solid: mp 106.5-107.0 °C; NMR $(CDCI₃)$ δ 7.45-7.20 (m, 10 H), 5.94 (m, 1 H), 3.47 (t of d, 2 H, $J = 7, 7$ Hz), 2.62 (t, 2 H, $J = 7$ Hz), 2.00 (s, 3 H). Anal. (C₁₈- $H_{18}N_2O$) C, H, N.

The following compounds were prepared by the procedures used in the synthesis of $\dot{8}$ (method A in Table I).

N-(2-Cyanoethy1)butanamide (2Oa): mp 72.5-74.0 "C; *NMR* $2 \text{ H}, J = 7 \text{ H2}, 2.07 \text{ (t, 2 H, } J = 7 \text{ H2}), 1.52 \text{ (tq, 2 H, } J = 7, 7$ Hz), 0.85 (t, 3 H, $J = 7$ Hz). Anal. (C₇H₁₂N₂O) C, H, N. $(DMSO-d_6)$ δ 8.17 (s, 1 H), 3.27 (dt, 2 H, $J = 7, 7$ Hz), 2.63 (t,

 $N-(2-Cyanoethyl)-4-methylbenzamide$ (20d): $(d, 2 H, J = 8 Hz)$, 7.29 $(d, 2 H, J = 8 Hz)$, 3.49 $(dt, 2 H, J = 7$, 7 Hz), 2.78 (t, 2 H, $J = 7$ Hz), 2.36 (s, 3 H). Anal. $(C_{11}H_{12}N_2O)$ C, H, N. 108.0-108.5 °C; NMR (DMSO- d_8) δ 8.78 (t, 1 H, $J = 7$ Hz), 7.77

148.5-149.5 °C; NMR (DMSO- d_6) δ 8.66 (m, 1 H); 7.16 (t, 1 H, $J = 7$ Hz), 7.04 (d, 2 H, $J = 7$ Hz), 3.46 (dt, 2 H, $J = 7$, 7 Hz), 2.77 (t, 2 H, $J = 7$ Hz); 2.23 (s, 6 H). Anal. (C₁₂H₁₄N₂O) C, H, N. $N-(2-Cyanoethyl)-2,6-dimethylbenzamide (20e): mp$

N- (2-Cyanoet hy1)-2-[**4-** (2-met **hylpropyl)phenyl]propan**amide (20f): wax; NMR (DMSO- d_6) δ 8.30 (m, 1 H), 7.21 (d, 2 H, $J = 8$ Hz), 7.06 (d, 2 H, $J = 8$ Hz), 3.58 (m, 1 H), 3.50-3.10 $(m, 2 H), 2.61$ (t, $2 H, J = 7 Hz$), 2.40 (d, $2 H, J = 7 Hz$), $1.95-1.70$ $(m, 1 H)$, 1.33 (d, 3 H, $J = 7 Hz$), 0.86 (d, 6 H, $J = 7 Hz$). Anal. (CieH22N20) *C,* H, N.

The following compound was prepared by procedures used in the preparation of 20c (method B in Table I).

(S)-[2-[**(2-Cyanoethyl)amino]-2-oxo-l-(phenylmethyl)** ethyllcarbamic acid, 1,l-dimethylethyl ester (20b): mp (m, *5* H), 6.96 (d, 1 H, J ⁼8 **Hz),** 4.13 (m, 1 H), 3.50-3.15 (m, 2 H), 2.96 (dd, 1 H, J ⁼7, 7 **Hz),** 3.00-2.67 (m, 1 H), 2.60 (t, 2 H, $J = 7$ Hz), 1.40-1.10 (m, 9 H). Anal. (C₁₇H₂₃N₃O₃) C, H, N. 83.5-85.5 °C; *NMR* (*DMSO-d₆*) δ 8.31 (t, 1 H, $J = 7$ Hz), 7.40-7.00

The following compounds were prepared by the method described for making tetrazole 6 from amide 8 via the chromatographic purification of intermediate 12.

 $\overline{5}$ -n-Propyl-1H-tetrazole (21a):¹⁵ wax; NMR (DMSO- d_6) δ 2.86 (t, 2 H, J ⁼7 **Hz),** 1.71 **(tq,** 2 H, J ⁼7, 7 Hz), 0.91 (t, 3 H, $J = 7$ Hz). Anal. $(C_4H_8N_4)$ C, H, N.

(S)-[2-Phenyl-1-(**lH-tetrazol-5-yl)ethy1]carbamic** acid,

(15) Borg-Warner Corp., Brit. Pat. GB1163355, September **4,** 1969.

1,l-dimethylethyl ester (21b): mp 140.0-144.0 "C; NMR (DMSO-de) 6 7.61 (d, 1 H, J = 8 *Hz),* 7.35-7.10 (m, *5* H), *5.06* (dd, 1 H, $J = 7, 7$ Hz), 3.40-3.00 (m, 2 H), 1.40-1.00 (m, 9H); α ³²_D $(c = 1.02, \text{MeOH}) = -15.9 \pm 0.8^{\circ}.$ Anal. $(C_{14}H_{19}N_5O_2)$ C, H, N. 5-[1,1-Diphenylethyl]-1H-tetrazole $(21c)$: mp 131.5-134.0

"C; NMR (CDC13) 6 7.40-7.20 (m, 6 H), 7.20-7.00 (m, **4** H), 2.27 (s, 3 H). Anal. $(C_{15}H_{14}N_4)$ C, H, N.

5-[4-Methylphenyl]-lH-tetrazole (21d): mp 249.0-250.5 "C; Hz), 2.40 *(s, 3 H)*. Anal. *(C₈H₈N₄) C, H, N.* NMR (DMSO- d_6) δ 7.93 (d, 2 H, $J = 8$ Hz), 7.41 (d, 2 H, $J = 8$

5-[2,6-Dimethylpheny1]-1H-tetrazole (21e): mp 168.0-169.5 $= 8$ Hz), 2.02 (s, 6 H). Anal. (C₉H₁₀N₄) C, H, N. $^{\circ}$ C; NMR (DMSO- d_6) δ 7.38 (t, 1 H, J = 8 Hz), 7.23 (d, 2 H, J

The following compound was made by the same procedure described for making tetrazole 6 from amide 8 in one pot without the isolation of intermediate 12.

(R,S)-5-[**1-[4-(2-MethyIpropyl)phenyl]ethyl]-lH-tetrazole** $(21f):^{16}$ mp 101.0-102.0 °C; NMR (DMSO- d_6) δ 7.30-7.00 (m, 4 H), 4.50 (9, 1 H, J = 7 Hz), 2.38 (d, 2 H, J ⁼7 **Hz),** 1.79 (m, 1 H), 1.66 (d, 3 H, $J = 7$ Hz), 0.86 (d, 6 H, $J = 7$ Hz). Anal. $(C_{13}H_{18}N_4)$ C, H, N.

 (S) -5- $($ 1-Amino-2-phenylethyl)-1H-tetrazole (22). (S) -2phenyl-1-(lH-tetrazol-5-yl)ethylcarbamic acid, 1,l-dimethylethyl ester (21b) *(500* mg, 1.7 mmol, 1 equiv), 4 N HCl (2.16 mL, 8.6 mmol, **5** equiv), and **THF** were mixed and stirred at room temperature. After 4 h, another **5** equiv of 4 N HCl was added. After 20 h, the THF was removed in vacuo, water (10 mL) was added, and the **pH** of the aqueous mixture was adjusted to 4-5 with 10 N NaOH. Solids precipitated. These were filtered and dried under high vacuum **to** yield 218 mg (66%) of a white powder: mp 273.5-277.0 "C (slow decomposition); *NMR* (DMSO-de) 6 7.30-7.00 (m, **5** H), 4.66 (dd, 1 H, J = 7,7 Hz), 3.34 (dd, 1 H, J ⁼7,7 Hz), 1.1°. Anal. $(C_9H_{11}N_5)$ C, H, N. 3.16 (dd, 1 H, $J = 7, 7$ Hz); $[\alpha]^{27}$ _D ($c = 0.74$, DMSO) = +46.4 \pm

Acknowledgment. We thank Alfred J. Mical for the chiral HPLC analysis of compound **22.** M.E.P. is grateful to Deap S. Irino for technical assistance.

Formation of Imidazopyridines by the Phase Transfer Catalyzed Reaction of α -(Aminomethyl)pyridines with CHCl₃ and Alkaline Hydroxide

Kevin C. Langry

Environmental Sciences Division, Lawrence Livermore National Laboratory, *P.O.* Box 808, Livermore, California 94550

Received July *25, 1990* (Revised Manuscript Received November 6, *1990)*

The reaction of chloroform with 2-(aminomethy1)pyridine (1) under basic phase-transfer catalysis affords the highly fluorescent imidazo[1,5-a]pyridine **(2)** in 25% isolated yield. Despite the formation of considerable *tarry* residue, GC-MS indicates that the volatile fraction of the reaction is simple and consists of 2 and two minor components identified as N -(2-pyridylmethyl)formamide (6) and (2-pyridylmethyl)isonitrile (7). The basic phase transfer catalyzed reaction of chloroform with a series of α -(aminomethyl)azanaphthalenes was found to be 25% range, GC of the reaction mixtures indicates that the volatile fractions generally consist of residual starting aminomethyl compound, the imidazo product, and a minor amount of the $(\alpha$ -azanaphthylmethyl)formamide. However, **3-(aminomethyl)isoquinoline** (18) failed to provide any of the expected **imidazo[l,5-b]isoquinoline** (19). The failure to detect 19 was investigated.

Groundwater contaminated with $CHCl₃$ has become an important public health issue, and considerable effort is being directed toward development of low-cost, on-site analytical methods for monitoring contamination levels. We sought to apply remote fiber fluorometry to groundwater analysis by development of a method capable **of**

^{~ ~~ ~~ ~} (16) Valenti, *P.;* Rampa, A.; Fabbri, G.; Giueti, P.; Cima, L. Acto Pharm. Weinherm **1983,** 316,752. Reported mp 90-91 "C.

⁽¹⁷⁾ Both the L enantiomer and the D,L-mixture of 22 were synthesized. Chual resolution of **DL-22** was achieved on a Crownpak CR column at **40** "C at pH = 3 in 10% ethanol and 90% aqueous perchloric acid. Elution of **L-22** under identical conditions showed the presence of only one enantiomer, thereby signifying that the sample is at least 98% the L-isomer.

measuring $10^{-6}-10^{-9}$ M CHCl₃ dissolved in water.¹ In this report, we describe the reaction of CHCl₃ under basic phase-transfer catalysis (PTC) with 2-(aminomethyl) pyridyl derivatives to form intensely fluorescent imidazopyridines.

Our goal was to develop a "one-pot" reaction that would generate fluorescent products from $CHCl₃$ and nonfluorescent precursors. The most direct approach was to exploit the carbene chemistry of CHCl₃ and attempt to trap the base-derived :CCl₂ with a compound that would ultimately yield a luminescent product. The nonfluorescent 2- (aminomethy1)pyridine (2-AMP, **I)** was selected as the precursor because the α -aminomethyl group of this substrate, with the addition of : CCl_2 , could potentially be converted into the highly fluorescent imidazo $[1,5-a]$ pyridine **(2,** eq 1)2 by way of a chloromethylenimine intermediate.³

Results and Discussion

The reaction of 2-AMP in 1,2-dimethoxyethane (DME) with CHCl₃ and tetrapropylammonium bromide stirred over 40% aqueous NaOH at **50** "C provided, along with considerable tarlike residue, the expected imidazo $[1,5$ alpyridine **(2)** in **25%** isolated yield. Despite the condition of the final reaction mixture and the relatively poor yield, the intense fluorescence of 2 (ex. at 254 or 366 nm, em. λ_{max} 447 nm) allowed the progress of the reaction to be easily monitored by analytical TLC.

Clearly, the low product yield suggests that the reaction of :CCl₂ with 1 does not follow a single pathway. In addition to the aminomethyl group, the pyridyl ring nitrogen is also a potential site for reaction with $:CC1₂$. Presented in Scheme I are the most probable paths available to the reaction of 2-AMP with $CHCl₃$ under basic PTC.

Path a of Scheme I is consistent with the generally accepted sequence for the reaction of :CCl₂ with primary

amines; however, this progression of intermediates avails itself to a variety of potentially isolable reaction products.4 In this sequence and subsequent to the formation of zwitterion 3, hydrolysis of either the (dichloromethy1)amine **4** or the ensuing chloromethyliminium ion **5** would yield **N-(2-pyridylmethyl)formamide (6).5** In addition, **5** can undergo ring closure and form the imidazopyridine or it can suffer α -dehydrochlorination to provide the corresponding isonitrile **(7).**

Analysis by GC-MS of the organic phase from the reaction indicated that the volatile fraction was not very complex. In addition to **1** and **2,** the only other principal components were a minor fraction **(<3%)** that exhibited a molecular ion of *m/z* 136 and a fourth fraction that provided a molecular ion of *m/z* 118. The GC retention time and MS fragmentation pattern of the compound with *m/z* 136 were consistent with data obtained from an authentic sample of formamide **6.3** However, the quantity of 6 detected is probably not representative of the actual amount produced during the course of the reaction **because** control experiments show that under the basic PTC conditions the formamide is cleanly and rapidly hydrolyzed to **1.**

The existence of a second component with *m/z* 118 suggested that **(2-pyridylmethy1)isonitrile (7)** was also formed. Although **7** could not be isolated in appreciable yields and its fate remains unknown, FTIR spectra of aliquots of the reaction mixture show a moderate absorbance at 2153 cm-', further supporting the presence of the isonitrile. The GC retention times for **2** and **7** were distinct, with the isonitrile fraction eluting the column first. The MS fragmentation patterns for the two compounds were similar except for a consistent difference in the ratios of the fragment ion intensities: **2** *m/z* (%) 118 (100),92 (22), 78 (17), *64* (40); **7** *m/z* (%) 118 (loo), 92 **(20),** 78 (94), *64* (26). The isonitrile **7** was present throughout the course of the reaction and was equal to \sim 10% of the amount of **2** produced. It has been suggested that **7** can cyclize to **2,** and we hope to investigate this possibility.6

The reactivity of : $CCl₂$ is such that it probably cannot discriminate between the nitrogen of the primary amino moiety and the pyridyl ring nitrogen of 2-AMP. This assumption is supported by calculations that estimate the enthalpy of activation for the reaction of : $CCl₂$ with ethylene to be almost zero and indicate that the transition-state free energy is determined by entropy consider-

⁽¹⁾ For reviews of remote fiber spectroscopy, see: (a) Angel, S. M. Spectroscopy 1987, 2, 38. (b) Seitz, W. R. Anal. Chem. 1984, 56, 16A. (c) Peterson, J. I.; Vurek, G. G. Science 1984, 224, 123. (d) Angel, S. M.; Ridley, R., Janata, J., Seitz, W. R., Eds.; ACS Symposium Series 403; American
Chemical Society: Washington, DC, 1989; pp 345–363.
(2) Lerner, D. A.; Horowitz, P. M.; Evleth, E. M. J. *Phys. Chem.* 1977,

^{81,} **12.**

⁽³⁾ Bower, J. D.; Ramage, G. R. *J. Chem. Soc.* **1955, 2834.**

⁽⁴⁾ *Isonitrile Chemistry;* **Ugi, I., Ed.; Academic Press: New York, 1971; Chapter 2.**

⁽⁵⁾ Smith, P. A. S.; Kalenda, N. W. *J. Org. Chem.* **1958, 23, 1699. (6) Schdlkopf, U.; Eilers, E.; Hantke, K.** *Liebigs Ann. Chem.* **1976, 969.**

Table I. Products from the PTC Reaction of CHCl₃ with **a-(Aminomethy1)pyridyl Derivatives over Aqueous NaOH**

' Isolated yield. * **CC** yield.

ations.' In addition, the bimolecular rate constant for the reaction of dichlorocarbene, generated by laser flash photolysis, with pyridine has been measured to be \sim 8 \times 10^9 M⁻¹ s^{-1,8} Consequently, it is reasonable to assume that the reaction of hydroxide-generated : $CCl₂$ with 2-AMP will approach diffusion-controlled conditions and that the carbene will not exhibit much selectivity and will react with the first nitrogen-based unshared electron pair that it encounters. In this case, path b of Scheme I represents an important competing reaction sequence that leads to the production **of** unwanted products and reduced yields of **2.**

Path b is similar to the Fujiwara reaction in which CHC1, reacts with pyridine in a solution **of** alkaline hydroxide.⁹ The major products of the Fujiwara reaction are aldehydic imines and amidines derived from cleavage of the N-alkylated pyridine ring.¹⁰ There are other reports of basic phase transfer catalyzed reactions of CHCl₃ with substituted pyridines that invoke mechanisms involving the reaction of : $CCl₂$ with the pyridyl ring nitrogen.¹¹ Moreover, stabilized carbenes (e.g., : $C(CN)_2$ and :C- $(CO₂Et)₂$) form isolable ylides with pyridine and azanaphthalenes,12 and recently it was reported that ylide intermediates are formed by the reaction of pyridine with laser flash generated phenylchlorocarbene¹³ and dichlorocarbene.⁸ In the case of 2-AMP, an analogous reaction is proposed in which the pyridyl ring nitrogen competes with the aminomethyl group for $:CCl₂$ to generate a -CClz-pyridinium species **(8).** Assuming that the initial ylide survives to be protonated, such electron-deficient N-alkylated and N-acylated rings are extremely susceptible to reactions with nucleophiles at the ortho and para positions.14J5 The carbene-activated pyridyl ring undoubtedly suffers attack by ambient nucleophiles $(OH^-, 2$ -AMP, H_2O) to form numerous byproducts and tar.

The reaction of chloroform under basic PTC with the 2-(aminomethy1)pyridyl moiety is general and can be applied to other systems. As shown in Table I, the α -aminomethyl derivatives of both quinoline and isoquinoline are converted into their corresponding imidazo analogues. Unfortunately, the yields of the annulated products are in the 25% range, despite nearly complete consumption of the starting amines. Nevertheless, the reaction mixtures of the azanaphthalenes provided relatively simple gas chromatograms that were analogous to the results obtained for **1.16 2-(Aminomethy1)quinoline (9)** was converted into the imidazoquinoline **10** in 24% yield, and the only other significant component (2%) detected by GC was a compound whose GC and MS data corresponded to that of **N-(2-quinolylmethyl)formamide (1 1).** Treatment of **15** produced the imidazo[5,1-a]isoquinoline (16) in 32% yield along with a minor amount of formamide **17.** The reaction of the 4-methoxyquinoline derivative 12 with CHCl₃ gave, in addition to the expected imidazo compound **13,** the N-formylated derivative **14.**

3-(Aminomethy1)isoquinoline (18) did not provide any imidazo[1,5-b]isoquinoline (19). Analysis of the early stages of the reaction by GC-MS indicated the presence of a single component with a molecular ion of *m/z* **168,** and the reaction mixture exhibited an absorbance in the IR at 2152 cm-'. These spectral features vanished long before **18** was completely consumed and are more consistent with formation of an isonitrile than a ring closure reaction to form **19.** In fact, **19** is a rather elusive compound and presumably has not been reported.

In order to evaluate the stability of **19** under the conditions of basic PTC, an attempt was made to prepare **19** by treatment of *N-* (3-isoquinolylme thy1)formamide **(20)** with 1 molar equiv of POCl_3 in CH_2Cl_2 and excess Et_3N . The use of this method is significant because the intermediates formed in the reaction of POCl₃ with formamides are the same as those postulated for the reaction of : CCl_2 with primary amines. 4.17 Despite mild reaction conditions (25 "C, 3 min), no **19** was formed. However, the reaction did provide as the major product an unstable compound with an intense IR absorbance at 2152 cm⁻¹, indicating the presence of an isonitrile group. A 200-MHz 'H NMR (CDCl,) spectrum of material rapidly purified on silica gel

⁽¹⁶⁾ It was noticed that **if** the **base-catalyzed** reactions were **performed** in the presence of air the α -aminomethyl derivatives were oxidized at the α -pyridyl methylene carbon to give small amounts (10%) of the corre-sponding amides. This occurs through a reaction of O_2 with the baseformed carbanion:

(17) Ulrich, H. *The Chemistry of Itnjdoyl Halides;* Plenum Press: New York, **1968.**

⁽⁷⁾ (a) Skell, P. s.; Cholod, M. s. J. *Am. Chem. SOC.* **1969,** *91,* **7131.** (b) Houk, K. N.; Rondan, N. G.; Mareda, J. *Tetrahedron* 1985, 41, 1555.
(c) Blake, J. F.; Wierschke, S. G.; Jorgensen, W. L. J. *Am. Chem. Soc.*
1989, *111*, 1919. (8) **Chateauneuf, J. E.: Johnson, R. P.: Kirchhoff**, M. M. J. *Am. Chem.* (8) Chateauneuf, J. E.: Johnson, R. P.: Kirchhoff, M. M. J. *Am. Chem.*

SOC. **1990,111,321'7.** '

⁽⁹⁾ Uno, T.; Okumura, K.; Kuroda, Y. J. *Org. Chem.* **1981,46,3175. (10)** Uno, T.; Okumura, K.; Kuroda, Y. Chem. *Pharm. Bull.* **1982,30, 1876.**

⁽¹¹⁾ (a) Berg-Nielsen, K. *Acta Chem. Scand. Ser. E* **1977,31,224.** (b) Amoldi, A.; Calli, R.; Zagni, A. *Heterocycles* **1979,12, 1335. (12)** (a) Pomerantz, M.; Rooney, P. *J. Org.* Chem. **1988,53,4374.** (b)

Kirmse, **W.;** *Carbene Chemistry,* 2nd ed.; Academic Press: New York, **1971.**

⁽¹³⁾ Jackson, J. E.; Soundararajan, N.; Platz, M. S.; Liu, M. T. H. J. *Am. Chem. SOC.* **1988, 110, 5595.**

⁽¹⁴⁾ (a) Rodig, **0.** R. Quaternary Pyridinium Compounds. **In** *Pyridine and Its Derivatives, Supplement Part I;* Abramovitch, *R.* A., Ed.; John Wiley & Sons: New York, 1974; Chapter III. (b) Kost, A. N.; Gromov, S. P.; Sagitullin, R. S. Tetrahedron 1981, 37, 3454.
(15) King, J. A., Jr.; Donahue, P. E.; Smith, J. E. J. Org. Chem. 1988,

^{53, 6145.}

(1:4 heptane/EtOAc) exhibited **all** the normal isoquinoline ring resonances found in 20, except that the formamide CHO (δ 8.34) and NHCHO (δ 6.89) protons were absent and the α -methylene doublet ArCH₂NHCHO (δ 4.68) had collapsed into a singlet and was shifted downfield (ArCH₂NC:, δ 4.92). Clearly, an activated imine (-N= CHX, \bar{X} = Cl or OPOCl₂) is being formed, but apparently rapid α -elimination of HX to give isonitrile 21 is a more favorable course for the reaction than is cyclization to **19.**

These results with **20** are in contrast to those obtained for the reaction of **N-(1-isoquinolylmethy1)formamide (17)** with $POCl₃/Et₃N$, whereby 17 is efficiently and quantitatively cyclized to **16** without formation of any of the corresponding isonitrile **23.** Because the formamidomethyl groups of **17** and 20 are both located adjacent to the isoquinolyl nitrogen, these two compounds probably react with $POCl₃/Et₃N$ such that both reactions progress toward transition states that are preceded by intermediates of similar structure, as shown in Scheme 11. For the case of the 1-substituted isoquinoline **17,** loss of the methylene proton H_d of 24 results in the elimination of charge on the isoquinolyl nitrogen and occurs simultaneously with aromatization of the imidazo ring. This process undoubtedly has a low activation energy and occurs more rapidly than \cos of H_c , a step that would otherwise generate isonitrile 23. The empirical resonance energies (RE) of compounds **16** and **17** are not known, but the sum of the RE for the isolated rings suggests that formation of the imidazo ring in **16** leads to a net gain of resonance stabilization relative to **17** or 23.1a In comparison, the inability to generate **19** from **18** or **20** most likely resides in the high activation energy that is associated with the forfeiture of resonance stabilization that would occur upon formation of **19.** Loss

of H_b in 22 eliminates the charge on the isoquinolyl nitrogen, but this can occur only at the expense of considerable RE due to partial bond fixation.¹⁹ Elimination of H_a apparently is a less energetic process that maintains the aromatic character of the isoquinolyl system and leads to formation of isonitrile **21.**

The instability of isonitriles **7** and **21** is apparently related to the position of the isonitrilomethyl group being adjacent to the heterocyclic nitrogen. We have prepared **(3-pyridylmethy1)isonitrile** from the corresponding **3-** (aminomethy1)pyridine by the PTC reaction of CHC1, with NaOH solution and found that the purified isonitrile **(25%** yield) was stable for months, indicating that the reactivity of **7** and **21** is an intramolecular phenomenon and not simply related to the reactivity of ring-based nitrogens toward the isonitrile group.

The PTC reactions of CHCl₃ with the aminomethyl compounds were monitored by GC, and the concentration of the imidazo compounds increased linearly with time; however, before the starting material was completely consumed $(\sim 10-20\%$ remaining), the rate of product formation changed and the concentration of the imidazo compound began to decline. In the absence of $CHCl₃$, the purified imidazo heterocycles were unaffected by the basic phase-transfer reaction conditions. However, the addition of CHC1, to these control reactions resulted in a measurable time-dependent reduction in the concentration of lumophore. Exhaustion of the imidazo compounds did not result in the commensurate production **of** any identifiable compounds, but rather lead to a menagerie of very minor products inseparable by TLC. The GC traces of these reactions were typified by a reduction in the intensity of the imidazo peak, and no additional compounds were present. Jones and Rees have described some reactions of : $CCl₂$ with pyrroles²⁰ and imidazoles²¹ and have shown that the carbene insertion into the double bond of $-C_{\beta} = C_{\alpha}NH-$ is the primary reaction that leads to isolable products with these ring systems. Similar reactions may be important to the CHCl₃-dependent decomposition of the imidazo products reported here.

Experimental Section

Melting points were obtained from samples in open capillary tubes and are uncorrected. IR spectra were obtained on an Mattson Polaris FTIR spectrometer. NMR spectra were recorded on a Varian EM-390, a Bruker MSL-300, or a Nicolet 200-MHz spectrometer with tetramethylsilanq as an internal standard. Low-resolution electron-impact mass spectra were recorded on a Hewlett-Packard Model 5987 mass spectrometer with direct sample insertion or by GC separation on a 0.32 mm **X** 30 m DB1 capillary column. High-resolution mass spectra were recorded at the Facility for Advanced Instrumentation at the University of California, Davis on a VG ZAB-2H. All thin-layer chromatography (TLC) was performed on Analtech (Newark, DE) precoated glass plates of silica gel GF. Analytical TLC to monitor reactions was accomplished with 0.25-mm thick silica gel plates briefly exposed to anhydrous ammonia. Preparative TLC was performed on **20** *cm* **x** 20 cm plates coated to a thickness **of** either 0.50 mm or 1.0 mm of silica gel. Chromatograms were visualized by illumination with a hand-held lamp emitting 254-nm or 366-nm light. Routine capillary gas chromatography was done on a Hewlett-Packard Model **5880 gas** chromatograph using a **0.25** mm an FID detector at 325 °C. GC chromatograms were displayed
and integrated by a Hewlett-Packard Level Two 5880A Series terminal. CHCl₃ was passed through neutral aluminum oxide

~~~~ ~ ~

**<sup>(18)</sup>** (a) **Gordon, A. J.; Ford, R. A. The Chemist's Companion: A Handbook of Practical Data, Techniques, and References; John Wiley** *h* **Sons: New York, 1972; p 131. (b) Acheson, R. M.** *An* **Introduction** *to*  **the Chemistry** *of* **Heterocyclic Compounds, 3rd ed.; Wiley-Interscience: New York, 1976. (c) Hess, B. A,, Jr.; Schaad, L. J.; Holyoke. C. W.: Jr. Tetrahedron 1972,** *28,* **3657.** 

**<sup>(19)</sup> Hibertv. P. C.; Ohanessian,** *G.;* **Delbecq, F.** *J.* **Am. Chem. SOC. 1985,107,3095.** 

**<sup>(20)</sup> Jones, R. L.; Rees, C. W.** *J.* **Chem. SOC. C 1969,2249. (21) Jones, R. R.; Rees, C. W.** *J.* **Chem. SOC. C 1969,2251.** 

(Brockmann activity I) to remove ethanol. 1,2-Dimethoxyethane (DME) was refluxed over calcium hydride and distilled under nitrogen. 2-(Aminomethy1)pyridine was obtained from Aldrich Chemical Co. and distilled at reduced pressure prior to use. The quinoline and isoquinoline aminomethyl dihydrochlorides were synthesized, and their preparations will be reported elsewhere.

**Imidazo[ 1,5-a]pyridine** (2). To a solution of 2-(aminomethyl)pyridine  $(1.0 \text{ mL}, 9.7 \text{ mmol})$ , CHCl<sub>3</sub>  $(2.0 \text{ mL}, 25 \text{ mmol})$ , and tetrapropylammonium bromide (53 mg, 0.2 mmol) in DME (15 mL) was added 20 mL of a 40% w/v solution of aqueous NaOH. The two-phase reaction mixture was rapidly stirred under N<sub>2</sub> at 50 °C and monitored periodically by TLC and GC. After 4.5 h, the dark brown organic phase was collected, diluted with  $CH<sub>2</sub>Cl<sub>2</sub>$  (50 mL), and washed with water (2  $\times$  30 mL). The aqueous phases were back-extracted with  $CH_2Cl_2$  (3  $\times$  30 mL). The organic fractions were combined, dried over anhydrous NazS04 and filtered and the solvents removed with a rotary evaporator. The thick brown residue **was** chromatographed on a 2.0 **x** 18 cm column of silica gel eluted first with EtOAc and then with 5% CH<sub>3</sub>CN in EtOAc. The fractions containing product were collected, and the solvent was removed under reduced pressure, leaving a brown residue that crystallized upon cooling. This material was condensed onto a cold finger (80  $^{\circ}$ C (1-2) mmHg)), giving 293 mg (25% yield) of white solid 2: mp 53-54 OC (lit., mp *54-55* "C); **IR** (KBr, *cm-')* 3085,1633,1443,1437,1329, *<sup>b</sup>*6.44-6.81 (m, 2 H), 7.41-7.54 (m, 2 H), 8.13-8.20 (d, 1 H), 8.29 *(8,* 1 H); **EIMS** *m/z* (relative intensity) 118 (loo), 91 (24), 78 (18), 64 (42); HRMS for  $C_7H_6N_2$  calcd 118.0531, found 118.0519. 1245, 1116, 996, 921, 795, 739, 657; <sup>1</sup>H NMR (90 MHz, DMSO-de)

**Imidazo[ 1,s-a ]quinoline (10).** To a mixture of 2-(aminomethy1)quinoline dihydrochloride (520 mg, 2.25 mmol) and tetrapropylmmonium bromide (53 mg, 0.2 mmol) in DME (10 **mL)**  was added 10 mL of a 40% w/v solution of aqueous NaOH. The mixture was rapidly stirred under  $N_2$ , and when the solids had dissolved, the two-phase solution was heated to 50 °C and CHCl<sub>3</sub>  $(800 \mu L, 10 \text{ mmol})$  was added in one portion. The reaction mixture was monitored periodically by TLC (silica gel, 5% CH<sub>3</sub>CN in EtOAc) and GC. After 16 h, the organic phase was collected, diluted with  $\text{CH}_2\text{Cl}_2$  (30 mL), and washed with saturated aqueous KCl  $(2 \times 30 \text{ mL})$ . The organic fraction was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and filtered, and the solvents were removed with a rotary evaporator. The residue **was** chromatographed on two preparative 1-mm thick thin-layer silica gel plates eluted with  $7\%$  CH<sub>3</sub>CN in EtOAc. The major fluorescent fraction  $(R_f 0.4)$  was washed from the silica with 5% MeOH in CH<sub>2</sub>Cl<sub>2</sub>, the solvent removed, and the residue condensed onto a cold finger (90-95 °C (0.3) mmHg)), giving 92 mg (24% yield) of white solid **10:** mp 75-76  ${}^{\circ}$ C (lit.<sup>22</sup> mp 73–75 °C); <sup>1</sup>H NMR (200 MHz, acetone- $d_6$ ) *b* 7.13-7.18 (d, 1 H), 7.42-7.51 (m, 3 H), 7.58-7.68 (m 1 H), 7.77-7.83 (dd, 1 **H),** 8.27-8.33 (dm, 1 H), 8.91 (8, 1 H); IR (KBr, cm-') 3100, **1610,1485,1454,1405,1332,1263,1219,1118,926,810,758,655;**  EIMS **m/z** (relative intensity) 168 (loo), 140 (30), 129 (21); HRMS for  $C_{11}H_8N_2$  calcd 168.0687, found 168.0690.

**Imidazo[5,l-a]isoquinoline (16).** To a suspension of 1- **(aminomethy1)isoquinoline** dihydrochloride (231 mg, 1.0 mmol) and tetrapropylammonium bromide (27 mg, 0.1 mmol) in DME *(5* **mL)** was added *5* **mL** of a 40% w/v solution of aqueous NaOH. CHCl<sub>3</sub> (400  $\mu$ L, 5 mmol) was added in one portion, and the reaction was performed **as** for **10.** After 3.25 h, the concentration of **16** had reached ita maximum value and the reaction mixture was worked up as for **10.** The residue was chromatographed on two preparative thin-layer silica gel plates eluted with **5% MeOH**  in  $CH_2Cl_2$ . The major fluorescent fraction  $(R_f 0.4)$  was collected, the solvent removed, and the residue sublimed onto a cold finger (90-95 °C (0.3 mmHg)), giving a white solid that was crystallized from heptane (54 mg, 32% yield): mp 115-116 °C (lit.<sup>22-24</sup> mp 116-117 °C); IR (KBr, cm<sup>-1</sup>) 3122, 3072, 1489, 1459, 1445, 1369, 1239,1114,912,821,793,762,656; 'H *NMR (200 MHz,* acetone-@ *<sup>b</sup>*6.92-6.96 (d, 1 H), 7.41-7.60 (m, 12 lines, 2 H), 7.68-7.73 (dm, 1 H), 7.86 **(s,** 1 H), 8.11-8.17 (dm, 2 H), 8.25 **(s,** 1 H); EIMS *m/z*  (relative intensity) 168 (100), 140 (33), 128 (8); HRMS for  $C_{11}H_8N_2$ calcd 168.0687, found 168.0691.

**5-Methoxyimidazo[ 1,5-a]quinoline (13).** To a suspension of **2-(aminomethyl)-4methoxyquinoline** dihydrochloride (522 *mg,*  2.0 mmol) and tetrapropylammonium bromide (53 mg, 0.2 mmol) in DME (10 mL) **was** added 10 mL of a 40% w/v solution of aqueous NaOH. CHCl<sub>3</sub> (800  $\mu$ L, 10 mmol) was added in one portion, and the reaction was performed **as** for **10.** After 4.4 h, the concentration of **13** had reached ita maximum value and the reaction mixture was worked up **as** for **10.** The residue was eluted with a solution of 3% MeOH in  $CH_2Cl_2$ . The major fluorescent fraction  $(R_f 0.4)$  was collected, the solvent removed, and the brown residue sublimed onto a cold finger at reduced pressure (150 "C (0.3 mmHg)), giving 95 mg of white solid. Recrystallization from heptane gave 79 mg (20% yield) of pure **13:** mp 131.5-132.5 "C; 'H NMR (300 MHz, CDC13) **6** 4.01 *(8,* 3 H), 6.80 *(8,* 1 H), 7.18 **(s,** 1 H), 7.44-7.54 (m, 1 H), 7.62-7.72 (m, 1 H), 8.08-8.08 (dd, 1 H), 8.24-8.30 (dm, 1 H), 8.73 *(8,* 1 H); 13C 124.91,123.71,120.11, **119.75,114.17,91.03,55.29;** IR (KBr, *cm-')*  **3098,2967,1631,1565,1486,1460,1400,1359,1277,1211,1139,**  1103,926,820,761,652; EIMS *m/z* (%) 198 (loo), 183 (43), 155 (68); HRMS for  $\rm{C_{12}H_{10}N_{2}O}$  calcd 198.0793, found 198.0766. Anal. Calcd for C<sub>12</sub>H<sub>10</sub>H<sub>2</sub>O: C, 72.71; H, 5.09; N, 14.13. Found: C, 72.77; NMR (75 MHz, CDCl,) **6** 149.43, 131.17, 129.07, 128.71, 126.52,

H, 5.27; N, 13.81. The band of silica from the base line to  $R_f$  0.2 was collected, stirred with 40 mL of 5% MeOH in  $CH_2Cl_2$ , and then filtered. The solvent was removed from the filtrate and the residue chromatographed on a **0.5"** thick **silica** gel plate that was eluted with 5% MeOH in  $CH_2Cl_2$ . The band with  $R_f$  0.5 was collected and crystallized from  $\text{CH}_2\text{Cl}_2$ /heptane, giving 13 mg (3% yield) of  $((4-methoxy-2-quinolyl)methyl)formamide (14) as white neededes:$ mp 147-148 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 4.06 (s, 3 H), 4.72 (d, 2 H), 6.66 **(s,** 1 H), 7.34 (br *8,* 1 H), 7.53-7.48 (m, 1 HI, 7.73-7.68  $(m, 1 H), 7.91 (d, J = 8.25 Hz, 1 H), 8.18 (d, J = 8.85 Hz, 1 H),$ 8.41 *(8,* 1 H); IR (KBr, cm-') 3295,3059,2878,1657, 1595, 1570, **1546,1511,1464,1445,1420,1386,1361,1242,1234,1188,1112,**  989, 761; EIMS *m/z* (%) 216 (29), 187 (83), 173 (loo), 159 (31). Anal. Calcd for C<sub>12</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub>: C, 66.65; H, 5.60; N, 12.96. Found: C, 66.73; H, 5.82; N, 12.81.

Acknowledgment. Work **performed** under the auspices of the **U.S.** Department of Energy **by** Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. I thank the **U.S.** DOE Hazardous Waste Remedial Actions Program (HAZWRAP) for financial support and Drs. James Epler and Michael Angel for their support of this work.

**<sup>(22)</sup> van** Niepen, **S. P.** J. M.; Memink, C.; **van** Leusen, A. M. *Tetra-*  **(23) bimlinger, H.;** Vandewalle, J. J. M.; Lmgier, W. **R.** F.; de **Ruiter,**  *hedron Lett. 1980,21,* **3723.** 

**<sup>(24)</sup>** Zimmer, H.; Glasgow, D. G.; **McClanahan,** M.; Novinson, T. *E. Chem. Ber. 1975,108,* **3771.** 

*Tetrahedron Lett.* **1968, 2806.**